Hitung-hitungan tentunya sangat penting untuk kita ketahui, entah yang bersifat spontanitas maupun ilmiah. Kita dari semenjak Tk telah diajarkan bagaimana agar kita selalu memiliki sikap ingin tahu dan penting sekali hitung-hitungan kita pelajari.
Pada artikel yang satu ini, kami suguhkan tentang Induksi Matematika. Disini menemukan banyak informasi yang terdapat pada buku Kemendikbud RI keluaran resmi dari pemerintah.
Materi Matematika Kelas 11 Bab 1 Induksi Matematika
1.1 Pengantar Induksi Matematika
Masalah
Tanpa menggunakan alat bantu hitung, rancang formula yang memenuhi pola penjumlahan bilangan mulai 1 hingga 20. Kemudian, uji kebenaran formula yang ditemukan sedemikian sehingga berlaku untuk penjumlahan bilangan mulai dari 1 hingga n, dengan n bilangan asli.
Alternatif Penyelesaian
a. Pola yang terdapat pada, yaitu:
• Selisih dua bilangan yang berurutan selalu sama yaitu 1.
• Hasil (1 + 20) = (2 +19) = (3 + 18) = (4 + 17) = . . . = (10 +11) = 21.
Artinya terdapat sebanyak 10 pasang bilangan yang jumlahnya sama dengan 21.
Jadi hasil 1 + 2 + 3 + . . . + 18 + 19 + 20 = (20/2) .21 = 210.
b. Untuk mengetahui pola yang terdapat pada 1 + 2 + 3 + . . . + n, untuk n bilangan asli, perlu dipilih sebarang n > 20 . Misalnya kita pilih n = 200. Sekarang, kita akan menyelidiki apakah pola yang terdapat pada 1 + 2 + 3 + . . . + 18 + 19 + 20 berlaku pada 1 + 2 + 3 + . . . + 198 + 199 + 200?
• Selisih dua bilangan yang berurutan selalu sama yaitu 1.
• Hasil (1 + 200) = (2 +199) = (3 + 198) = (4 + 197) = . . . = (100 +101) = 201.
• Artinya terdapat sebanyak 100 pasang bilangan yang jumlahnya sama dengan 201.
Jadi hasil 1 + 2 + 3 + . . . + 198 + 199 + 200 = (200/2).201 = 20.100
Dengan demikian untuk sebarang n bilangan asli yang genap, kamu dapat menentukan jumlah bilangan berurutan mulai dari 1 hingga n.
1.2 Prinsip Induksi Matematika
Contoh
Buktikan dengan induksi matematika bahwa jumlah n bilangan ganjil positif yang pertama sama dengan n2.
Alternatif Penyelesaian
Tentu kamu mengetahui pola bilangan ganjil positif, yaitu: 2n – 1, untuk n bilangan asli.
Sedemikian sehingga akan ditunjukkan bahwa:
1 + 3 + 5 + 7 + . . . + (2n – 1) = n2.
Sebut, P(n) = 1 + 3 + 5 + 7 + . . . + (2n – 1) = n2.
Untuk membuktikan kebenaran formula P(n), kita harus menyelidiki apakah P(n) memenuhi prinsip induksi matematika, yaitu langkah awal dan langkah induksi.
a) Langkah awal:
Untuk n = 1, maka P(1) = 1 = 12 = 1.
Jadi P(1) benar.
b) Langkah Induksi:
Karena P(1) benar, maka P(2) juga benar, hingga dapat diperoleh untuk n = k,
P(k) = 1 + 3 + 5 + 7 + . . . + (2k – 1) = k2 juga benar, untuk setiap k bilangan asli.
Akan ditunjukkan untuk bahwa untuk n = k + 1, sedemikian sehingga
P(k + 1) = 1 + 3 + 5 + 7 + . . . + (2(k + 1) – 1) = (k + 1)2 adalah suatu pernyataan yang benar.
Karena P(k) = 1 + 3 + 5 + 7 + . . . + (2k – 1) = k2 adalah pernyataan yang benar, maka
1 + 3 + 5 + 7 + . . . + (2k – 1) = k2
Jika kedua ruas ditambahkan dengan (2k + 1), akibatnya
1 + 3 + 5 + 7 + . . . + (2k – 1) + (2k + 1) = k2 + 2k + 1 = (k + 1)2.
Jadi, dengan P(k) ditemukan P(k + 1).
Dengan demikian terbukti bahwa: 1 + 3 + 5 + 7 + . . . + (2n – 1) = n2 adalah benar, untuk setiap n bilangan asli.
Karena formula P(n) = 1 + 3 + 5 + 7 + . . . + (2n – 1) = n2, memenuhi kedua prinsip induksi matematika, maka jumlah n bilangan ganjil positif yang pertama sama dengan n2 adalah benar, dengan n bilangan asli.
1.3 Bentuk-Bentuk Penerapan Induksi Matematika
1.3.1 Penerapan Induksi Matematika pada Barisan Bilangan
Masalah
Misalkan ui menyatakan suku ke i suatu barisan bilangan asli, dengan i = 1, 2, 3, . . . , n.
Diberikan barisan bilangan asli, 2, 9, 16, 23, 30, 37, 44, 51, . . . .
Rancang suatu formula untuk menghitung suku ke 1.000 barisan bilangan tersebut. Ujilah kebenaran formula yang diperoleh dengan menggunakan induksi matematika.
Alternatif Penyelesaian
Terlebih dahulu kita mengkaji barisan bilangan asli yang diberikan, bahwa untuk n = 1 maka u1 = 2; untuk n = 2 maka u2 = 9; untuk n = 3 maka u3 = 16; demikian seterusnya. Artinya kita harus merancang suatu formula sedemikian sehingga formula tersebut dapat menentukan semua suku-suku barisan bilangan tersebut. Mari kita telaah hubungan antara n dengan sukusuku barisan bilangan 2, 9, 16, 23, 30, 37, 44, 51, . . . yang dideskripsikan pada Gambar 1.3.
1.3.2 Penerapan Induksi Matematika pada Keterbagian
Contoh
Dengan induksi matematika, tunjukkan bahwa 11n – 6 habis dibagi 5, untuk n bilangan asli.
Alternatif Penyelesaian
Kita misalkan P(n) = 11n – 6, dengan n bilangan asli.
Pada contoh ini kita harus menunjukkan bahwa 11n – 6 dapat dituliskan sebagai bilangan kelipatan 5. Akan ditunjukkan bahwa P(n) memenuhi kedua prinsip induksi matematika.
a) Langkah Awal
Kita dapat memilih n = 3, sedemikian sehingga, 113 – 6 = 1.325 dan 1.325 habis dibagi 5, yaitu 1.325 = 5(265).
Dengan demikian P(3) habis dibagi 5.
b) Langakah Induksi
Karena P(3) benar, maka P(4) benar, sedemikian sehingga disimpulkan P(k) = 11k – 6 benar, untuk k bilangan asli. Selanjutnya akan dibuktikan bahwa jika P(k) = 11k – 6 habis dibagi 5, maka P(k + 1) = 11(k + 1) – 6 habis dibagi 5.
Karena 11k – 6 habis dibagi 5, maka dapat kita misalkan 11k – 6 = 5m, untuk m bilangan bulat positif. Akibatnya, 11k = 5m + 6.
Bentuk 11k + 1 – 6 = 11k(11) – 6,
= (5m + 6)(11) – 6 (karena 11k = 5m + 6)
= 55m + 60
= 5(11m + 12).
Dengan demikian P(k + 1) = 11(k + 1) – 6 dapat dinyatakan sebagai kelipatan 5, yaitu 5(11m + 12).
Jadi benar bahwa P(k + 1) = 11(k + 1) – 6 habis dibagi 5.
Karena P(n) = 11n – 6 memenuhi kedua prinsip induksi matematika, maka
terbukti P(n) = 11n – 6 habis dibagi 5, untuk n bilangan asli.
Daftar Pustaka :
Sudianto Manullang, Andri Kristianto S., Tri Andri Hutapea, Lasker Pangarapan Sinaga, Bornok Sinaga, Mangaratua Marianus S., Pardomuan N. J. M. Sinambela. 2017. Matematika SMA/MA/SMK/MK Kelas XI. Jakarta : Pusat Kurikulum dan Perbukuan, Balitbang, Kemendikbud.